The Replicability and Generalizability of Internalizing Symptom Networks

Carter J. Funkhouser^{a,b}, Kelly A. Correa^{a,b}, Stephanie M. Gorka^a, Brady D. Nelson^c, K. L Phan^a, and Stewart A. Shankman^{a,b}

Northwestern University

^aUniversity of Illinois at Chicago, ^bNorthwestern University, ^cStony Brook University

Network Analysis

- Strength = sum of absolute edge weights
- *Closeness* = length of the average shortest

Blue line = positive association. Red line = negative association. Line thickness indicates strength of the association. Gray area in rings around each $Sx = R^2$ explained by neighboring Sx. Replicability/Generalizability Metrics

Global Metrics

- Correlation of edge weights
- Network Comparison Tests (NCTs) testing differences in:
 - Overall network structure
 - Global strength (sum of absolute edges)
 - Individual edges
- Correlation of centrality indices

Specific Metrics

- % of edges that replicated (i.e., were estimated and had matching sign)
- Matches in centrality rank-order (1st, 2nd, 3rd, etc. most central symptom)

Results

Replicability and Generalizability

	Replicability	Generalizability
Global Metrics		
hos of edge lists	.5384	.3666
Sig. differences in network structure?	Community network 2 different from all other networks	Community network 2 different from clinical network
Sig. differences in global strength?	none	none
% of sig. different edges	0-6%	0-4%
<u>Centrality ps</u>		
Strength	.3780	.0454
Closeness	.3579	.1647
Betweenness	.4078	1924
Specific Metrics		
% of replicated edges	75-85%	74-82%
Centrality rank-order	matches (%)	
Strength	9-27%	9-27%
Closeness	18-46%	9-27%
Betweenness	18-73%	36-64%

UNIVERSITY OF ILLINOIS AT CHICAGO

Discussion

Global metrics suggested moderate to strong replicability

- Generalizability to clinical network was weaker
- Specific metrics indicated ~80% of individual edges replicated and the most central Sx (dysphoria) was consistent
- Generalizability ≈ Replicability
- Dysphoria may be a central component of internalizing disorders⁷
- Poor replicability of other centrality rankorders (e.g., 2nd, 3rd, etc. most central Sx)
 - Likely due to few significant differences in centrality rank-order
- Limitation \rightarrow unable to examine replicability across clinical samples

References

- Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry. Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2017). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology.
- Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of "evidence that psychopathology symptom networks have limited replicability" by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology. Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., ... Karstoft, K.-I. (2018). Replicability and Generalizability of Posttraumatic Stress Disorder (PTSD) Networks: A Cross-Cultural Multisite Study of PTSD Symptoms in Four Trauma Patient Samples. Clinical Psychological Science. Watson, D., O'Hara, M. W., Simms, L. J., Kotov, R., Chmielewski, M., McDade-Montez, E. A., ... Stuart, S. (2007). Development and validation of the Inventory of Depression and Anxiety Symptoms (IDAS). Psychological Assessment. Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods. Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. *Journal of Abnormal* Psychology.

Funding sources: R01MH098093, R01MH101497, R21MH080689

Email: cfunkh2@uic.edu

- Relationships between symptoms ("edges") have been estimated using Markov random field (PMRF) models
 - Edge = bivariate relationship after statistically controlling for all other symptoms
 - Centrality = how strongly is a symptom connected to other symptoms?
- Replicability of PMRF networks is unclear
 - Preliminary evidence that global metrics are more replicable than specific metrics^{2,3,4}

Sample	Ν	D
Undergraduate Sample 1	1176	
Undergraduate Sample 1	578	
Community Sample 1	277	
Community Sample 2	276	
Clinical Sample	266	Treatment- based on par

Description

t-seekers or recruited n depression and/or inic diagnosis

