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The popularity of network analysis in psychopathology research has increased exponentially in recent
years. Yet, little research has examined the replicability of cross-sectional psychopathology network
models, and those that have used single items for symptoms rather than multiitem scales. The present
study therefore examined the replicability and generalizability of regularized partial correlation networks
of internalizing symptoms within and across 5 samples (total N � 2,573) using the Inventory for
Depression and Anxiety Symptoms, a factor analytically derived measure of individual internalizing
symptoms. As different metrics may yield different conclusions about the replicability of network
parameters, we examined both global and specific metrics of similarity between networks. Correlations
within and between nonclinical samples suggested considerable global similarities in network structure
(rss � .53–.87) and centrality strength (rss � .37–.86), but weaker similarities in network structure (rss �
.36–.66) and centrality (rss � .04–.54) between clinical and nonclinical samples. Global strength (i.e.,
connectivity) did not significantly differ across all 5 networks and few edges (0–5.5%) significantly
differed between networks. Specific metrics of similarity indicated that, on average, approximately 80%
of edges were consistently estimated within and between all 5 samples. The most central symptom (i.e.,
dysphoria) was consistent within and across samples, but there were few other matches in centrality
rank-order. In sum, there were considerable similarities in network structure, the presence and sign of
individual edges, and the most central symptom within and across internalizing symptom networks
estimated from nonclinical samples, but global metrics suggested network structure and symptom
centrality had weak to moderate generalizability from nonclinical to clinical samples.

General Scientific Summary
There were considerable similarities in network structure, the presence and sign of individual edges,
and the most central symptom within and across internalizing symptom networks estimated from
undergraduate or community samples. Although the presence and sign of individual edges and the
most central symptom were similarly consistent between nonclinical samples and a clinical sample,
the generalizability of global network characteristics was generally weak to moderate.
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A psychiatric disorder has traditionally been conceptualized as a
set of co-occurring symptoms that are the result of a “common
cause” or underlying latent variable. The network theory of psy-
chopathology conceptually contrasts with this perspective, as it
proposes that symptoms causally interact in dynamic networks
(Borsboom, 2017). For example, in contrast to the common cause
model’s assertion that insomnia, fatigue, and concentration diffi-
culties share a common underlying mechanism, the network ap-
proach to psychopathology suggests that insomnia may cause
fatigue, which causes concentration difficulties, and so forth.

In psychopathology research, the network approach has often
been examined using pairwise Markov random field (PMRF)
models that estimate pairwise relationships between symptoms
after statistically controlling for all other symptoms in the network
(e.g., partial correlation coefficients). PMRF models of cross-
sectional data may highlight direct and potentially causal bivariate
relationships among symptoms (Beard et al., 2016; Epskamp &
Fried, 2018) as well as elucidate mechanisms of comorbidity
(Cramer, Waldorp, van der Maas, & Borsboom, 2010). The result-
ing model estimates can be visualized as a network of nodes (e.g.,
symptoms) that are connected by edges (i.e., pairwise relationships
between nodes). PMRF networks can also reveal which symptoms
are most central (i.e., most strongly connected to other symptoms).
Centrality measures in undirected networks do not provide infor-
mation about the direction of relationships. It is possible that a
central symptom leads to other symptoms, in which case the
central symptom may be involved in the onset and/or maintenance
of other symptoms and represent a viable target for therapeutic
intervention (e.g., Beard et al., 2016; Fried et al., 2017).1 However,
it is also possible that other symptoms lead to the central symptom,
in which case intervening on the central symptom would have no
effect on other symptoms.

Replicability and Generalizability of Cross-Sectional
Psychopathology Networks

Simulation studies have examined the methodological validity
of network analytic methods by investigating the range of condi-
tions in which the models adequately converge on the “true”
network structure (e.g., van Borkulo et al., 2014). However, de-
termining the extent to which PMRF models of psychopathology
replicate and generalize requires the comparison of network struc-
tures across samples (Borsboom, Robinaugh, Rhemtulla, & Cra-
mer, 2018; Forbes, Wright, Markon, & Krueger, 2017a; Fried &
Cramer, 2017). The few studies that have examined the replica-
bility and generalizability of psychopathology networks have
sparked debate as to which metrics are most appropriate for
assessing similarities between samples. Some have argued that
network interpretations and clinical implications focus on the
presence, sign, and strength of specific edges and the rank-order of
node centrality (i.e., which symptom is most central, second most
central, third most central, etc.). An examination of these charac-
teristics within and across two samples of major depressive disor-
der (MDD) and generalized anxiety disorder (GAD) symptoms
revealed that 83.4–86.6% of edges replicated within and between
networks but only 16.7–55.6% of individual nodes’ centrality
rank-order matched within and between samples (Forbes et al.,
2017a), leading to the conclusion that “popular network analysis

methods produce unreliable results” (Forbes et al., 2017a, p. 969;
see also Forbes, Wright, Markon, & Krueger, 2019).2

Others have critiqued these specific metrics and argued that
network replicability should be assessed using more global metrics
such as the “coefficient of similarity” (i.e., spearman correlation
between edge lists; Borsboom et al., 2017; Fried et al., 2018), the
Network Comparison Test (NCT; van Borkulo, Epskamp, & Mill-
ner, 2016), and Spearman correlations of centrality indices be-
tween networks (Borsboom et al., 2017). Reanalyzing Forbes,
Wright, Markon, and Krueger’s (2017a) data using these metrics,
Borsboom et al. (2017) came to the opposite conclusion as Forbes
et al. (2017a)—specifically, that the networks under consideration
were “highly similar” (Borsboom et al., 2017, p. 990). Three recent
studies examining the replicability and generalizability of posttrau-
matic stress disorder (PTSD) symptom networks similarly found
that coefficients of similarity and correlations of centrality strength
(i.e., the sum of all absolute edge weights connected to a node)
replicated strongly. However, NCTs identified some differences in
structure and global strength between networks (Benfer et al.,
2018; Fried et al., 2018; Knefel et al., 2019). Additionally, two
studies examining global network strength as a potential prognos-
tic indicator of depression treatment response came to different
conclusions (although the effects were of comparable size and in
the same direction; Schweren, van Borkulo, Fried, & Goodyer,
2018; van Borkulo et al., 2015). In sum, the extent to which
psychopathology networks replicate and generalize across samples
remains unclear.

Limitations of Prior Psychopathology Network
Replicability and Generalizability Studies

The existing research on the replicability of psychopathology
networks (and the psychopathology network literature more
broadly) has several noteworthy limitations. First, many network
analyses (e.g., Forbes et al., 2017a) used zero-imputation to ac-
count for a skip structure in their data (e.g., if a participant did not
endorse the cardinal symptom(s) of a disorder [e.g., depressed
mood or loss of interest for MDD], the remaining symptoms of that
disorder were not assessed). Zero-imputation is problematic be-
cause it can substantially alter the correlation matrices upon which
networks are based (Borsboom et al., 2017). This alteration of
correlation matrices is likely to increase the observed replicability
because it alters the correlation matrices the same way in both
samples, and likely contributed to the unexpectedly high replica-
bility found in the previously mentioned study of MDD and GAD
symptom networks (Borsboom et al., 2017; Forbes et al., 2017a).
Second, many studies have assessed symptoms (i.e., nodes) using

1 This centrality hypothesis is not an implication of network theory and,
although it is popular in the psychopathology network literature, the utility
of centrality measures for identifying intervention targets in psychopathol-
ogy networks has been questioned (Bringmann et al., 2019; Dablander &
Hinne, 2019).

2 Steinley, Hoffman, Brusco, and Sher (2017) provided a commentary
on Forbes et al.’s (2017a) article in which they introduced a new method
termed fixed-margin sampling for examining whether network model
results differ from what would be expected by chance. However, because
the appropriateness of this method as a measure of network replicability
has come into question (Epskamp, Fried, et al., 2018), we do not discuss
this technique in further detail.
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single items from a questionnaire or interview, which tend to be
less reliable than aggregations of multiple items (Cicchetti &
Prusoff, 1983). Third, the few studies that have examined psycho-
pathology network replicability examined replicability within one
(e.g., PTSD) or two DSM disorders.

The Present Study

To address the limitations of prior psychopathology network rep-
licability studies, the present study aimed to examine the replicability
and generalizability of regularized partial correlation networks of
internalizing symptoms across five samples (two undergraduate sam-
ples, two community samples, and a clinical sample). The Inventory
of Depression and Anxiety Symptoms (IDAS; Watson et al., 2007)
was utilized to assess symptoms because it (a) does not contain
skip-outs, (b) assesses each symptom using multiple items, and (c)
assesses multiple nonoverlapping domains of internalizing psychopa-
thology.

Due to the debate regarding which metrics are most suitable for
assessing replicability (Borsboom et al., 2017; Forbes et al., 2017a;
Forbes, Wright, Markon, & Krueger, 2017b), our analyses were
agnostic and examined (a) the more global indices (e.g., the coeffi-
cient of similarity, the three permutation tests implemented by the
NCT, Spearman correlations of centrality indices) advocated for by
some (Borsboom et al., 2017; van Borkulo et al., 2016) as well as (b)
the more specific metrics (e.g., the presence/absence and sign of
individual edges and matches in centrality rank-order) advocated for
by others (Forbes et al., 2017a, 2017b). This study was primarily
exploratory in nature, but our hypotheses were twofold. First, we
hypothesized that more global metrics would be more replicable and
generalizable than more detailed metrics, as found by Forbes et al.
(2017a, 2017b) and Borsboom et al. (2017). Second, we expected
metrics to be more similar between networks estimated from random
split-halves of the same sample or from two samples from the same
population (e.g., between the two undergraduate networks and be-
tween the two community networks), and less similar between sam-
ples from different populations (e.g., between an undergraduate net-
work and a clinical network).

Method

Participants

Participants (total N � 2,573)3 were taken from five samples
recruited in the United States. Demographic characteristics of each
sample are provided in Table S1 in the online supplementary material.
The first sample (henceforth called “Undergraduate Sample 1”) con-
sisted of 1,176 unselected undergraduates attending a large, suburban
university in the northeast (Distefano et al., 2018; Nelson & Hajcak,
2017). The second sample (“Undergraduate Sample 2”) included 578
unselected4 undergraduates attending a large, urban university in the
midwest (Altman, Campbell, Nelson, Faust, & Shankman, 2013;
Gorka et al., 2013). Participants in the two undergraduate samples
were recruited through the psychology department subject pools and
received course credit for their participation.

The third (“Community Sample 1”) and fourth (“Community
Sample 2”) samples consisted of participants recruited from the
community to participate in a family study of neurophysiological
vulnerability factors for internalizing psychopathology (Correa,

Liu, & Shankman, 2019; Funkhouser, Correa, Carrillo, Klemballa,
& Shankman, 2019; Shankman et al., 2018). There were no
diagnosis-based inclusion criteria; however, participants were re-
quired to be between the ages of 18 and 30 and have at least one
full biological sibling who was eligible to participate. More de-
tailed information regarding the study’s inclusion and exclusion
criteria and procedures is available elsewhere (Shankman et al.,
2018). To avoid nonindependence of observations due to the
presence of sibling pairs, we randomly assigned one sibling from
each sibling pair to Community Sample 1 and assigned the other
sibling to Community Sample 2. Participants who did not partic-
ipate with a sibling (n � 97) were randomly allocated to one of the
two community samples, resulting in two samples each consisting
of biologically unrelated individuals (n � 277 and 276, respec-
tively). As these two community samples were taken from a single
study, they should be considered split-halves of one sample rather
than two independent samples. However, we refer to them as
separate samples to ease interpretation.

The fifth sample (“Clinical Sample”) consisted of 266 adults
aged 18–65 who were either seeking treatment for a range of
internalizing problems (n � 133; Lieberman, Gorka, Funkhouser,
Shankman, & Phan, 2017) or recruited for a study examining
psychophysiological processes in individuals who met DSM–IV
diagnostic criteria for MDD and/or panic disorder (PD; n � 133;
Shankman et al., 2013).5 Data from treatment-seekers used in the
present study were collected prior to treatment. Further details
regarding inclusion and exclusion criteria and study procedures are
described elsewhere (Lieberman, Gorka, DiGangi, Frederick, &
Phan, 2017; Shankman et al., 2013). Although treatment-seekers
differed from those recruited based on MDD and/or PD diagnosis
in their severity of several IDAS scales, we combined them to
maximize power for network estimation in light of recommenda-
tions that sample sizes be at least three times the number of
estimated parameters (e.g., Fried & Cramer, 2017).

Assessment of Internalizing Symptoms

The IDAS was used to assess internalizing symptoms in all five
samples. The IDAS includes 11 factor-analytically derived sub-
scales6 representing empirically distinct symptoms of internalizing
psychopathology over the past 2 weeks. The well-being subscale
was reverse coded and renamed “low well-being” so that higher
scores indicate greater symptom severity for all subscales. Internal

3 Four participants (0.2% of the total sample) had incomplete data and
were excluded from all analyses to simplify the reporting of results. The
total N of 2,573 represents the number of participants who had complete
data and were included in the network analyses.

4 The vast majority of participants in Undergraduate Sample 2 were
unselected, but 109 (18.8%) participants were selected to be female with
either high or low OCD or bulimia tendencies (Altman et al., 2013).

5 Both studies also recruited a group of healthy controls, but these
individuals were excluded so that the fifth sample could be an exclusively
clinical sample.

6 The IDAS also includes a 12th subscale entitled general depression,
but this scale was not included in the present study because it contains
items from several other subscales and thus is an aggregation of multiple
symptoms. Including this subscale would also distort the covariance ma-
trices due to conditioning on a collider (i.e., Berkson’s Bias; de Ron et al.,
2019).
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consistencies of the 11 subscales were adequate across all five
samples and are presented in Table S2.

Data Analyses

Network estimation. A nonparanormal transformation was ap-
plied to all data sets prior to network estimation to reduce the assump-
tion of normality (Liu, Lafferty, Wasserman, & Wainwright, 2009), in
line with recommendations for estimating networks on continuous,
non-normal data (Epskamp, Borsboom, & Fried, 2018; Epskamp &
Fried, 2018).7 We then individually8 estimated partial correlation
networks based on Pearson correlations for each sample. Networks
were regularized using the “graphical least absolute shrinkage and
selection operator” (GLASSO) with the extended Bayes information
criterion (EBIC; � � 0.5; Foygel & Drton, 2010) to identify edges
that are likely to be spurious (i.e., close to zero) and shrink their edge
weights to exactly zero. GLASSO network estimation and visualiza-
tion were performed using the R package qgraph (Epskamp, Cramer,
Waldorp, Schmittmann, & Borsboom, 2012). GLASSO is widely
used in psychopathology network analysis of continuous data and has
been thought to result in high specificity, meaning that it should not
estimate edges that are not in the “true” network (Epskamp & Fried,
2018). However, recent work suggests GLASSO may have poorer
specificity when the network is dense and many edges are near zero
(Williams & Rast, 2019), which may, in turn, affect replicability. As
suggested by a reviewer, we also used the mgm package to estimate
networks using nodewise regression, which may have higher speci-
ficity than GLASSO (Williams & Rast, 2019). Identical layouts (i.e.,
the average of the Fruchterman-Reingold algorithm layouts for each
GLASSO network) and the maximum value of the edge weights were
imposed on the network plots to facilitate visual comparisons across
networks and estimation methods.

Although previous studies have often examined symptom central-
ity using strength (i.e., the sum of all absolute edge weights connected
to a node), closeness (i.e., the inverse of the summed length of all
shortest edges between a node and all other nodes), and betweenness
(i.e., the number of times a node lies on the shortest connecting edge
between two other nodes), the latter two indicators have relatively
weaker conceptual interpretability in the context of symptom net-
works (Bringmann et al., 2019; Forbes et al., 2017a) and have exhib-
ited poor reliability (Beard et al., 2016; Epskamp, Borsboom et al.,
2018). We therefore focus on centrality strength and report closeness
and betweenness in the online supplementary materials. Lastly, we
used the R package mgm to calculate symptom predictability (i.e., the
amount of variance in a node explained by neighboring nodes, or R2;
Haslbeck & Fried, 2017).

Accuracy and stability of network parameters. We investi-
gated the accuracy and stability of network parameters using two
bootstrapping approaches as implemented by the R package bootnet
(Epskamp, Borsboom, et al., 2018). First, we computed 95% confi-
dence intervals (CIs) around edge weights via nonparametric boot-
strapping using 1,000 iterations. These CIs provide a measure of edge
weight accuracy. Second, we used case-drop bootstrapping to esti-
mate correlation stability (conditional stimulus [CS]) coefficients to
determine the stability of the rank-order of centrality indices. Simu-
lation studies indicate that CS-coefficients above .25 imply moderate
stability and CS-coefficients above .50 reflect strong stability (Ep-
skamp, Borsboom, et al., 2018). Edge weights difference tests and
centrality difference tests were calculated to test whether edges or

node centralities significantly differ (see Epskamp, Borsboom, et al.,
2018 for further description of these methods), and results are reported
in Figures S1 and S2 in the online supplementary materials.

Within-sample comparisons. We examined the within-sample
consistency of the two undergraduate samples by randomly divid-
ing them each into two equally sized split-halves, applying the
nonparanormal transformation to both split-halves, estimating a
network for each split-half, calculating global network character-
istics for each network and similarities between the two networks,
and repeating this process 10 times (Forbes et al., 2017a). We did
not examine split-halves of the two community samples or the
clinical sample, as the split-halves likely would not have had
sufficient power for network estimation (Fried & Cramer, 2017),
and Community Samples 1 and 2 were essentially split-half sam-
ples to begin with. Global network characteristics extracted from
each split-half network included global strength, the number of
nonzero, positive, and negative edges, mean node predictability,
and the most central node.

Global metrics. Global metrics of similarity between split-
halves included the coefficient of similarity, spearman correlations
of centrality indices between split-halves, and three permutation
tests implemented by the NCT using 5,000 iterations. First, the
omnibus test of network structure invariance tested whether the
overall structures (i.e., matrices of the edge weights) of the two
networks being compared were identical. Second, the global
strength invariance test examined whether global strength esti-
mates (i.e., the sum of absolute edge weights) significantly differed
between networks. Third, the individual edge invariance test quan-
tified the number of edges that differed between networks by
testing the null hypothesis that each edge was identical between
networks (using the Holm-Bonferroni method to correct for mul-
tiple comparisons).

Specific metrics. Specific network characteristics examined
included the percentage of edges that were consistently present and
absent across split-halves and matches in rank-order centrality as
calculated by Forbes et al. (2017a) and Borsboom et al. (2017) to
allow for multiple simultaneous ranks in the case of ties. Some
psychopathology network analyses have interpreted the strongest
edges (e.g., Beard et al., 2016) and a recent study examined the
replicability of the strongest and most stable edges, defined as
those with bootstrapped 95% CIs that did not include zero (Forbes
et al., 2019). However, bootstrapped CIs do not test whether edges
significantly differ from zero (Epskamp, Borsboom, et al., 2018)
and thus are not an optimal measure for identifying the strongest
and most stable edges in a network. To facilitate cross-study
comparison, we therefore included edges with CIs excluding zero
in the tables summarizing the results, but do not otherwise discuss
them.

7 Other recommended approaches for handling non-normal data include
estimating networks derived from polychoric or Spearman correlations
(Epskamp & Fried, 2018). In the present study, networks derived from
polychoric or Spearman correlations were highly similar to networks
estimated using the nonparanormal transformation (rs � .88).

8 Although a recently developed extension of the graphical lasso called
the fused graphical lasso allows for the joint estimation of multiple partial
correlation networks, we report results of individually estimated networks
because individually and jointly estimated networks were nearly identical
(rs � .98).
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In the pairwise comparisons examining whether edges were
consistently present or absent across split-halves, we focused on
whether edges present in the sparser network (i.e., network with
fewer edges) were also present in the denser network because a
denser network should not omit edges estimated in a sparser
network if networks are estimated with high specificity (Borsboom
et al., 2017). Although the specificity of GLASSO has been
questioned, nodewise regression has demonstrated high specificity
(Williams & Rast, 2019). Similarly, we examined whether edges
that were absent in the denser network were also absent in the
sparser network because a sparser network should not estimate
edges that are absent in a denser network. This nesting approach
accounts for differences in sparsity across networks due to differ-
ent sample sizes. Rather than reporting the results of each of the 10
iterations, we report the median and range of the global network
characteristics and between-network comparisons across the 10
split-halves for each of the two undergraduate samples.

Cross-network comparisons. The same metrics that were
used to examine consistency between random split-halves of the
two undergraduate samples were used to make cross-network
comparisons. For specific metrics, we first investigated metrics
across all five networks (e.g., how many edges were consistently
estimated across all five networks?) and then between each pair of
networks (e.g., how many of the edges estimated in Network A
were also estimated in Network B?). When comparing the pres-
ence or absence of individual edges between networks, we again
focused on whether edges present in the sparser network were also
present in the denser network and whether edges that were absent
in the denser network were also absent in the sparser network.

In addition to evaluating replicability across networks, we used
the replicationSimulator function in bootnet to estimate the ex-
pected replicability of each network’s structure. This is important
because the expected replicability rate of a characteristic would not
be 100% even if the characteristic were present in the “true”
network. In traditional significance tests, the expected replicability
rate equals the statistical power of the test. The exact expected
replicability rate is difficult to compute for complex multivariate
models such as network models, and depends on several factors
(e.g., sample size, network structure). The replicationSimulator
function estimates expected replicability by simulating new data
based on a network model and evaluating how well one should
expect this network structure to replicate in other samples if the
estimated network were true at the population level. Although this
approach is not ideal because it ignores estimation error in the
original network and compares edge lists and centrality using
Pearson correlations rather than spearman correlations, it provides
an estimate of the expected replicability rate for each network
structure. Expected replicability results are presented in Figure S3
in the supplementary materials.

Availability of Data and Materials

This study was not formally preregistered. However, in line with
recommendations to improve reproducibility and replicability in
clinical psychological research (Tackett et al., 2017) and in psy-
chopathology network analysis specifically (Borsboom et al.,
2017; Guloksuz, Pries, & van Os, 2017), we have made all data
and our analytic code available in the online supplementary ma-
terials.

Results

Symptom severities for each sample are reported in Table S3.
The samples differed in symptom severity such that the clinical
sample had higher severity than the other four samples for all
symptoms except appetite gain. There were also some differences
in symptom severities among the undergraduate and community
samples, but these differences were smaller in magnitude and not
consistent across symptoms. There were also sample differences in
sex, �2(4) � 24.17, p � .001, and age, F(4, 2547) � 297.38, p �
.001. There were more females in Undergraduate Sample 2 than in
Undergraduate Sample 1 (p � .001) and Community Sample 1
(p � .001), but no other significant differences in sex between
samples. All five samples differed from each other on age (with
one exception—the two community samples did not differ, p �
.971). The clinical sample was the oldest, followed by the two
community samples, Undergraduate Sample 2, and Undergraduate
Sample 1.

Network Estimation

The five networks are visualized in Figure 1. Visual compari-
sons across networks indicated that many edges were consistent
across all five networks, including relatively strong edges such as
dysphoria-lassitude and dysphoria-social anxiety. There were also
some edges that were inconsistent across the five networks, how-
ever. For example, the edge appetite loss-lassitude was only pres-
ent in three of the five samples.

Accuracy and Stability of Network Parameters

Bootstrapped CIs around the edge weights were small to mod-
erate (see Figure S4) and, as expected, were smaller for networks
estimated from larger samples (e.g., Undergraduate Networks 1
and 2). The CS-coefficient for strength exceeded the recommended
cutoff of .50 (Epskamp, Borsboom, et al., 2018) in in all five
networks (see Table S4 and Figure S5).

Within-Sample Comparisons

Global metrics. The analyses of the within-sample consis-
tency of the two undergraduate networks indicated that the median
global characteristics of the networks estimated from the split-
halves extracted from each of the two samples were generally
similar within and across the two samples (see Table 1). Compar-
isons between the 10 pairs of random split-halves for each of the
two undergraduate samples are summarized in Table 2. The om-
nibus test of network structure invariance and global strength
invariance test were not significant in either sample (ps � .459 and
.405) and the median number of significantly different edges
across split-halves was zero for both samples. These tests failed to
reject the hypotheses that there were differences in the overall
structure, global strength, or individual edges of the networks for
the split-halves. Edge weights (rss � .87 and .78), node predict-
abilities (rss � .93 and .94), and centrality strength (rss � .85 and
.86) were consistently strongly correlated between split-halves.

Specific metrics. We examined whether estimated edges rep-
licated across split-halves for each sample, and found that a me-
dian of 84.8–89.9% of nonzero edges in the sparser split-half
network replicated (i.e., were nonzero and had the same sign) in
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the denser split-half network. Examination of consistencies in
absent edges revealed that 58.0–69.2% of the absent edges in the
denser split-half network replicated in the sparser split-half net-
work. When examining matches in centrality rank-order, dyspho-
ria was identified as the most central symptom in all split-halves.
Across all 11 symptoms, however, exact matches in centrality
strength rank-order between split-halves were much less frequent
(36.4% and 45.5%).

Cross-Sample Comparisons

Global metrics. Global characteristics of the five networks
are summarized in Table 3. Consistent with prior research showing
that global network strength increases with symptom reduction9

(Beard et al., 2016; Bos et al., 2018), the clinical network had the

lowest global strength and was the sparsest of the five networks.
Results of the pairwise network comparisons are shown in Table 4.
Similarities between the two undergraduate samples were gener-
ally comparable in strength to similarities within the two under-
graduate samples (i.e., between random split-halves). Omnibus
tests of network structure invariance were statistically significant
for three of the 10 pairwise comparisons and indicated that the
overall network structure of Community Network 2 significantly
differed from that of the two undergraduate networks and the

9 Interestingly, this finding is inconsistent with the network theory,
which suggests that networks should be more strongly connected in clinical
samples (Borsboom, 2017). This phenomenon has been observed in mul-
tiple studies examining depression networks and is in need of explanation.

Figure 1. Pairwise Markov random field (PMRF) networks for each sample. Edge thickness represents the
strength of the partial correlation. Blue edges indicate positive relationships, and red edges indicate negative
relationships. The gray area in the rings around each node indicates predictability (i.e., the variance explained
by neighboring nodes). See the online article for the color version of this figure.
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clinical network. None of the global strength invariance tests were
significant, however, meaning that the null hypothesis that global
strength was equal across networks was not rejected. Additionally,
few edges were identified by the individual edge invariance test as
being significantly different between networks (maximum number
of significantly different edges between any pair of networks � 3
[5.5%]). Coefficients of similarity between nonclinical networks
ranged from .53 (Community Network 2 vs. Undergraduate Net-
work 2 and Community Network 1) to .84 (Undergraduate Net-
work 1 vs. Undergraduate Network 2). Coefficients of similarity
between the clinical network and nonclinical networks ranged
from .36 (vs. Community Network 2) to .66 (vs. Community
Network 1). Symptom predictability was strongly correlated
among the undergraduate and community networks (rss � .83), but
was less consistent between the clinical network and the other four
networks with rss ranging from .39 to .52 (see Table S5). Central-
ity strength for each of the five networks is plotted in Figure 2.
Spearman correlations of strength between nonclinical networks
ranged from .37 (Undergraduate Network 1 vs. Community Net-
work 2) to .73 (Undergraduate Network 1 vs. Undergraduate
Network 2), and comparisons between the clinical network and
nonclinical networks ranged from .04 (vs. Undergraduate Network
2) to .54 (vs. Community Sample 2).

Specific metrics. Examination of consistencies in specific
network parameters revealed that 53 (96.4%) of the 55 total
possible edges were estimated (i.e., nonzero) in at least one of the
five networks and 21 (38.2%) were consistently estimated in all
five networks.10 All but one (95.3%) of the 21 edges estimated in
all five networks were positive in all five networks. The remaining
edge (ill temper-suicide) was negative in Undergraduate Sample 2
but positive in the other four networks. Comparing nonzero edges
in the sparsest network (the clinical network) to those in the denser
networks and absent edges in the densest network (Undergraduate
Network 1) to those in the sparser networks, we found that 55.3%
of the 38 estimated edges in the sparsest network were estimated
in all four of the other networks, and two (16.7%) of the 12 absent
edges in the densest network were absent in all four other net-
works. Across the pairwise comparisons between networks,
73.7–85.4% of the nonzero edges in the sparser network replicated
(i.e., were nonzero and had the same sign) in the denser network
and 33.3–75.0% of the absent edges in the denser network repli-
cated (i.e., were also absent) in the sparser network.

Consistent with the results of the random split-halves of the two
undergraduate networks, dysphoria was consistently identified as

the most central node across all five networks. Although the most
central node was consistent across networks, the number of
matches in other rank-orders (e.g., the second, third, etc., most
central node) was consistently poor and ranged from zero to two
(18.2%). Centrality difference tests (see Figure S2) indicated that
there were few significant differences in centrality strength be-
tween symptoms with the exception that dysphoria was signifi-
cantly more central than all other symptoms in all five networks.
In fact, excluding dysphoria, there was only one case across all
five networks in which the centrality strength of two symptoms
that were adjacent in rank-order (e.g., second and third most
central) significantly differed.

Results of Models Estimated Using
Nodewise Regression

The nodewise regression networks are plotted in Figure S8, and
their accuracy, stability, characteristics, and replicability and gen-
eralizability are presented in detail in Figures S9–S10 and Tables
S8–S10. Nodewise regression yielded networks that were highly
correlated with (rss � .73), but sparser than, the GLASSO net-
works. Coefficients of similarity ranged from .28 to .82, and NCTs
indicated four significant differences in global structure, two sig-
nificant differences in global strength, and zero to two significant
differences in individual edges between networks. Cross-network
correlations of centrality strength ranged from .29 to .86. Specific
metrics of replicability indicated that 50.0–96.0% of individual
edges were consistent in each pair of networks and matches in
centrality rank-order ranged from one (9.1%) to three (27.3%).

Discussion

This study aimed to conduct an agnostic examination of the
replicability and generalizability of PMRF networks of internaliz-
ing symptoms across five samples. As there has been debate
surrounding the replicability and generalizability of psychopathol-
ogy network models (Borsboom et al., 2017; Forbes et al., 2017a,
2017b, 2019; Jones, Williams, & McNally, 2019) which partially
revolves around disagreement regarding which measures are most
appropriate for evaluating similarities across networks, we exam-

10 The 21 edges estimated consistently in all five networks may repre-
sent the core of the generalizable network structure of internalizing symp-
toms, and are plotted in Figure S7.

Table 1
Median (Range) of Global Network Characteristics of the Ten Pairs of Random Split-Halves From the Two Undergraduate Samples

Undergraduate sample 1 Undergraduate sample 2

Network characteristic First half Second half First half Second half

Global strength 4.75 (4.55–5.00) 4.86 (4.42–5.21) 4.52 (4.26–4.77) 4.59 (4.11–4.90)
% of nonzero edges 72.7% (67.3–76.4) 76.4% (65.5–81.8) 70.9% (60.0–80.0) 70.9% (67.3–76.4)
% of zero edges 27.3% (23.6–32.7) 23.6% (18.2–34.5) 29.1% (20.0–40.0) 29.1% (23.6–32.7)
% of positive edges 89.7% (87.5–94.6) 88.8% (86.0–94.9) 91.2% (89.5–97.4) 90.4% (87.2–97.4)
% of negative edges 10.3% (5.4–12.5) 11.3% (5.1–14.0) 8.9% (2.6–10.5) 9.7% (2.6–12.8)
% of edges with 95% CIs that excluded zero 67.6% (61.0–69.2) 62.8% (52.3–75.0) 48.7% (43.2–62.9) 41.3% (37.8–46.2)
Mean node predictability (R2) .43 (.42–.44) .43 (.42–.44) .44 (.41–.45) .42 (.41–.44)
Most frequent central node (strength) dysphoria dysphoria dysphoria dysphoria
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ined the more global measures advocated for by some groups (e.g.,
coefficients of similarity, correlations of centrality, NCTs; Bors-
boom et al., 2017) as well as the more specific metrics advocated
for by others (e.g., replicability of individual edges, matches in
rank-order centrality; Forbes et al., 2017a, 2017b).

Global Metrics of Network Similarity

Broader metrics of similarity generally suggested moderate to
strong similarities between random split-halves of the two under-
graduate samples and across the four nonclinical networks, with
weaker global similarities between the clinical and nonclinical
networks. Among the four nonclinical networks, coefficients of
similarity indicated moderate to strong similarities in global net-
work structure and correlations of centrality strength were gener-
ally in the moderate range. However, edges and centrality strength
tended to be more highly correlated within samples or between
networks from the same population than between networks from
different populations (e.g., undergraduate vs. clinical network).

Taken together, these metrics suggest that internalizing symptom
network characteristics (at least as measured by the IDAS) had
stronger replicability than generalizability.

Specific Metrics of Network Similarity

Compared with broader metrics of consistency, the replicability
and generalizability of specific metrics of network similarities was
weaker both within and across samples. Within- and cross-sample
comparisons of individual edges revealed that approximately four
in five estimated edges replicated, and the percentage of individual
edges that generalized from nonclinical networks to the clinical
network (73.7–81.6%) was similar to the percentage of individual
edges that replicated between nonclinical networks (75.0–85.4%).
In other words, our results suggest that if internalizing symptom
networks are estimated from two samples from any of the popu-
lations sampled in this study, a relationship between two symp-
toms that is present in one network (e.g., dysphoria-insomnia) has
an approximately 80% chance of replicating in the other network.

Table 2
Median (Range) of Network Comparisons Between the Ten Pairs of Random Split-Halves From the Two Undergraduate Samples

Split-half network comparisons Undergraduate sample 1 Undergraduate sample 2

NCT results
Omnibus test of network structure invariance p-value .459 (.237–.968) .405 (.017–.980)
Global strength invariance test p-value .585 (.113–.961) .692 (.494–.987)
% of significantly different edges in the individual edge invariance test 0% (0–0) 0% (0–1.8)

Edges
rs between all edges .87 (.83–.91) .78 (.66–.85)
rs between nonzero edges .78 (.65–.84) .64 (.46–.85)
rs between node predictabilities .94 (.85–.98) .93 (.87–.97)
Jaccard Indexa .76 (.69–.84) .69 (.58–.74)
% of nonzero edges in the sparser split-half that were also nonzero in

the denser split-half 89.9% (82.5–94.9) 84.8% (78.8–89.5)
% of nonzero edges in the sparser split-half that were nonzero and had

the same sign in the denser split-half 81.6% (79.1–90.2) 78.5% (68.4–84.6)
% of edges with 95% CIs that did not include zero in the sparser

network that also had CIs that excluded zero in the denser network 86.1% (75.0–100) 72.8% (57.9–81.2)
% of absent edges in the denser split-half that were also absent in the

sparser split-half 69.2% (50.0–85.7) 58.0% (53.3–69.2)
Node centrality % matched Most central node % matched Most central node

Same most central node in both split-halves (strength) 100% dysphoria 100% dysphoria
Rank-order correspondence rs Matches (%)b rs Matches (%)b

Strength .85 (.72–.95) 36.4% (27.3–63.6) .86 (.61–.94) 45.5% (18.2–63.6)

Note. NCT � Network Comparison Test. a The proportion of shared edges relative to the total number of edges in both networks. b As calculated by
Forbes, Wright, Markon, and Krueger (2017a) and Borsboom et al. (2017) to allow for multiple simultaneous ranks.

Table 3
Global Characteristics of the Five Networks

Network characteristic
Undergraduate

network 1
Undergraduate

network 2
Community
network 1

Community
network 2

Clinical
network

Global strength 5.24 5.10 4.71 4.78 4.19
Number of nonzero edges (% possible) 43 (78.2%) 41 (74.5%) 41 (74.5%) 40 (72.7%) 38 (69.1%)
Number of zero edges (% possible) 12 (21.8%) 14 (25.5%) 14 (25.5%) 15 (27.3%) 17 (30.9%)
Number of positive edges (% total) 35 (81.4%) 35 (85.4%) 39 (95.1%) 38 (95%) 34 (89.5%)
Number of negative edges (% total) 8 (18.6%) 6 (14.6%) 2 (4.9%) 2 (5.0%) 4 (10.5%)
Number of edges with 95% CIs that

excluded zero (% total) 32 (74.4%) 27 (65.9%) 19 (46.3%) 17 (42.5%) 13 (34.2%)
Mean node predictability (R2) .42 .42 .46 .49 .32
Most central node (strength) dysphoria dysphoria dysphoria dysphoria dysphoria
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When comparing rank-order centrality, dysphoria was consistently
the most central symptom and shared a positive edge with all other
symptoms in all five networks (with the exception of Community
Network 2, in which all edges except for dysphoria-suicidality
were present). This result is consistent with the tripartite model’s
assertion that negative affect is the common component across
depression and anxiety disorders (Clark & Watson, 1991; Shank-
man & Klein, 2003). The consistency of exact centrality rank-
order of the other symptoms was generally poor, but was generally
poorer between the clinical network and a nonclinical network
than between two nonclinical networks. However, there were few
significant differences in symptom centrality (see Figure S2),
suggesting that differences in centrality rank-order (with the ex-
ception of dysphoria being most central) were likely reflective of
sampling variability rather than true variability (i.e., nonreplica-
tion; Borsboom et al., 2017; Jones et al., 2019).

Implications, Caveats, and Recommendations for
Regularized Cross-Sectional Psychopathology
Network Analysis

Psychopathology networks have had a notable impact on psy-
chopathology research (Fried et al., 2017), but are not without their
criticisms and controversies (Bringmann & Eronen, 2018; Forbes
et al., 2017a, 2017b; Guloksuz et al., 2017). This controversy has
extended to network replicability, and the question of which rep-
licability metrics are most relevant or appropriate has been a
particular source of disagreement. More global network character-
istics such as overall network structure and global network
strength have been the focus of several studies, including studies
examining whether network characteristics predict treatment re-
sponse (Schweren et al., 2018; van Borkulo et al., 2015), and these
characteristics replicated well across networks in the present study.
Specific characteristics such as individual edges have also been

examined extensively in the psychopathology network literature
(e.g., to understand the role of bridging edges in comorbidity;
Cramer et al., 2010), and individual edges replicated and general-
ized approximately 80% of the time on average in the present
study. More advanced methods for evaluating the replicability of
individual edges such as Bayesian equivalence testing (Williams &
Mulder, 2019) may be informative in future replicability work.
Additionally, many studies have sought to identify the most central
symptom in a network (e.g., Beard et al., 2016), and dysphoria was
consistently the most central symptom within and across samples
in the present study. However, researchers interested in whether a
symptom is the second most central, third most central, and so
forth should note the few significant within-network differences in
centrality and the poor cross-network consistency of exact central-
ity rank-order.

As different network metrics answer different questions, we
recommend that researchers examine multiple replicability metrics
when appropriate and select metrics that align with their research
question(s). For example, a global metric such as the coefficient of
similarity may be useful for quantifying the degree of overall
similarity between two networks, but can obfuscate meaningful
differences in specific network characteristics (e.g., individual
edges). It is also important to note that network structure can
influence network models and their replicability in several ways.
First, network structure can affect the appropriateness of replica-
bility metrics. For example, one would only expect centrality
rank-order to replicate if there were true differences in centrality.
If all nodes were equally central (e.g., see the Curie-Weiss net-
work; Kac, 1968), any observed rank-order would purely reflect
sampling error. The dependence of replicability on details of the
data-generating mechanism is not specific to network models, but
rather applies to all multivariate techniques. Second, network
structure can influence model estimation performance (Epskamp,

Figure 2. Standardized centrality strength for each network. See the online article for the color version of this
figure.
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Kruis, & Marsman, 2017; van Borkulo et al., 2014). This study
primarily focused on GLASSO-regularized networks because this
estimation method is widely used in psychopathology network
analyses of continuous data. However, GLASSO may have poorer
specificity than other methods when the network structure is dense
(Williams & Rast, 2019; Williams, Rhemtulla, Wysocki, & Rast,
2019), which is often the case in psychopathology networks.
Estimating networks using a nodewise estimation approach rather
than GLASSO did not appreciably increase replicability in the
present study, but may be helpful in other studies, especially those
aiming to detect many small effects. In light of these consider-
ations, future studies examining psychopathology networks and
their replicability should evaluate replicability metrics on a case-
by-case basis and take network structure and its impact on model
estimation methods into consideration (e.g., by using bootstrap-
ping and/or the replicationSimulator function).

There are also several unresolved issues pertaining to psycho-
pathology network analysis. First, defining and quantifying net-
work replicability remains an ongoing challenge (Borsboom et al.,
2017; Forbes et al., 2017a, 2019). As different definitions can yield
different conclusions regarding whether causally distinct networks
are structurally equivalent (Schieber et al., 2017), further research
is needed to examine the validity of network replicability metrics
under various conditions. Second, the extent to which networks
replicate across different measures of the same disorder(s) is
unclear. Recent studies suggest that networks may be influenced
by symptom severity thresholds (Hoffman, Steinley, Trull, & Sher,
2018) but relatively robust to different raters (Moshier et al.,
2018). However, the effect of other differences between measures
(e.g., lack of content overlap; Fried, 2017) on symptom networks
and their replicability is unknown. Third, symptoms are typically
conceptualized and modeled as manifest variables in symptom
networks, but at least some symptoms may be indicators of latent
constructs (McFarland & Malta, 2010). If this is the case, the
extent to which conclusions drawn from network analyses of
observed symptoms generalize to the level of latent constructs may
be overestimated (Westfall & Yarkoni, 2016). Modeling symp-
toms in a network as latent variables offers one potential solution
to this problem (Epskamp, Rhemtulla, & Borsboom, 2017).

Strengths and Limitations

This study had numerous strengths, including the inclusion of
five samples and the examination of replicability within samples
and across samples from the same population as well as general-
izability to samples from different populations. Recent work sug-
gests Berkson’s Bias, which occurs when relationships in a sub-
population (e.g., a clinical sample for which a clinical severity
cutoff was an inclusion criterion) differ from those in the general
population, is a concern when interpreting networks estimated
from clinical samples (de Ron, Fried, & Epskamp, 2019). The
multisample approach and comparison of clinical and nonclinical
samples allowed us to detect the extent to which Berkson’s Bias
occurred, and this may explain why coefficients of similarity and
correlations were stronger between nonclinical networks than be-
tween the clinical network and nonclinical networks. The strong
psychometric properties of the factor analytically derived IDAS
was also a strength, as well as the fact that the IDAS assessed each
symptom using multiple items using nonoverlapping subscales.

This is an important feature because it is unclear how psychopa-
thology network analyses should handle “topographically overlap-
ping” nodes (e.g., “feeling blue” and “sad mood”; however, see the
goldbricker function in the networktools R package [Jones, 2018]
for a proposed tool to aid in identifying topologically overlapping
nodes).

This study also had several limitations. First, our results were
specific to internalizing symptoms and the reported replicability
and generalizability results may not extend to other domains of
psychopathology (e.g., externalizing symptoms). Second, the pres-
ent study only examined centrality strength, closeness, and be-
tweenness, and results should not be extended to other centrality
measures. Third, this study focused on LASSO-regularized and
nodewise regression networks and results should not be general-
ized to other types of networks or estimation methods. Therefore,
researchers may benefit from consideration of other network esti-
mation methods if the hypothesized “true” network is dense.
Fourth, the sizes of the community samples and the clinical sample
were somewhat smaller than those examined in other studies of
network replicability and generalizability (Forbes et al., 2017a;
Fried et al., 2018). Although these sample sizes are consistent with
those commonly studied in the psychopathology network litera-
ture, they prevented us from examining consistencies between
random split-halves of the two community samples and the clinical
sample. Fifth, sample characteristics may have influenced the
results. The clinical sample was comprised of treatment-seekers
for internalizing problems and individuals with MDD and/or PD,
and this heterogeneity may have reduced the degree to which the
clinical network approximated the “true” population network
(Fried & Cramer, 2017). Additionally, although the random as-
signment of siblings to either Community Samples 1 or 2 avoided
nonindependence of observations, it is possible that this procedure
artificially inflated the similarity of correlation matrices between
the two community samples given the familial aggregation of
psychopathology. This may have led to overestimated replicability
between the two community networks, but, importantly, would not
have affected any other pairwise network comparisons. Sixth, we
were unable to examine the replicability of network characteristics
between clinical samples because there was only one clinical
sample.

Conclusion

Replicability and generalizability are crucial issues for the field
of psychopathology network analysis. This study examined simi-
larities within and across networks of internalizing symptom net-
works and found substantial global similarities across networks.
Approximately 80% of individual edges replicated within and
across samples and the most central symptom (i.e., dysphoria) was
consistent within and across samples. In sum, both global and
specific metrics generally indicated considerable replicability
within and across undergraduate and community samples, but
network structure and symptom centrality had weak to moderate
generalizability to a clinical sample.
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