Evaluating the Criterion Validity of Hierarchical Psychopathology Dimensions Across Models: Familial Aggregation and Associations With Research Domain Criteria (Sub)Constructs

Carter J. Funkhouser¹, ², Kelly A. Correa¹, ², Allison M. Letkiewicz², Eugene M. Cozza², Ryne Estabrook¹, and Stewart A. Shankman¹, ²
¹ Department of Psychology, University of Illinois at Chicago
² Department of Psychiatry and Behavioral Sciences, Northwestern University

The Hierarchical Taxonomy of Psychopathology (HiTOP) posits that psychopathology is a hierarchy of correlated dimensions. Numerous studies have examined the validity of these dimensions using bifactor models, in which each disorder loads onto both a general and specific factor (e.g., internalizing, externalizing). Although bifactor models tend to fit better than alternative models, concerns have been raised about bifactor model selection, factor reliability, and interpretability. Therefore, we compared the reliability and validity of several higher-order HiTOP dimensions between bifactor and correlated factor models using familial aggregation and associations with Research Domain Criteria (RDoC; sub)constructs as validators. Lifetime psychopathology was assessed in a community sample (N = 504) using dimensional disorder severity scales calculated from semistructured interview data. A series of unidimensional, correlated factor, and bifactor models were fit to model several HiTOP dimensions. A bifactor model with two specific factors (internalizing and disinhibited externalizing) and a correlated two-factor model provided the best fit to the data. HiTOP dimensions had adequate reliability in the correlated factor model, but suboptimal reliability in the bifactor model. The disinhibited externalizing dimension was highly correlated across the two models and was familial, yet largely unrelated to RDoC (sub)constructs in both models. The internalizing dimension in the correlated factor model and the general factor in the bifactor model were highly correlated and had similar validity patterns, suggesting the general factor was largely redundant with the internalizing dimension in the correlated factor model. These findings support concerns about the interpretability of psychopathology dimensions in bifactor models.

General Scientific Summary

Research examining the validity of transdiagnostic psychopathology dimensions has predominantly used the bifactor model, which may have inadequate reliability and interpretability. The present study compared the validity of the bifactor model to the correlated factor model using familial aggregation and associations with Research Domain Criteria (RDoC; sub) constructs, which are thought to be involved in pathophysiology, as validators. Results supported previously expressed concerns about the reliability, validity, and interpretability of psychopathology factors when estimated using a bifactor model.

Keywords: Hierarchical Taxonomy of Psychopathology (HiTOP), bifactor, p-factor, internalizing, externalizing

Supplemental materials: https://doi.org/10.1037/abn0000687.supp

The Hierarchical Taxonomy of Psychopathology (HiTOP) is a structural organization of psychopathology based on findings from quantitative studies of psychopathology structure (Kotov et al., 2017). In contrast to traditional diagnostic classification systems, HiTOP conceptualizes psychopathological phenotypes as dimensional in nature and organizes phenotypes into a hierarchy of five

Carter J. Funkhouser https://orcid.org/0000-0003-4033-8113
Allison M. Letkiewicz https://orcid.org/0000-0002-6812-8735
Eugene M. Cozza https://orcid.org/0000-0002-8015-9198
Stewart A. Shankman https://orcid.org/0000-0002-8097-4483

Ethical approval for this study was obtained from the University of Illinois at Chicago Office for the Protection of Research Subjects (Protocol 2012-0646). This work was supported by National Institute of Mental Health Grants R01 MH098093 (PI: Stewart A. Shankman), F31 MH123042 (PI: Carter J. Funkhouser), and F31 MH121003 (PI: Kelly A. Correa).

Correspondence concerning this article should be addressed to Carter J. Funkhouser, Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States. Email: carterfunkhouser@gmail.com
levels based on observed patterns of covariation. First, individual symptoms and signs are combined into homogeneous symptom components (e.g., insomnia) and maladaptive traits (e.g., emotional lability). In turn, symptom components and maladaptive traits are grouped into syndromes, which correspond to diagnostic constructs in the Diagnostic and Statistical Manual (DSM). Syndromes are combined into subfactors, which capture the shared variance among constituent DSM diagnoses. For example, depression, generalized anxiety, and posttraumatic stress are combined into a distress subfactor, and circumscribed anxiety (social anxiety, specific phobia, agoraphobia, and panic disorder) and Obsessive Compulsive Disorder make up a fear subfactor. Subfactors in turn form spectra (e.g., the distress and fear subfactors form a higher-order internalizing factor). Finally, spectra can be aggregated into a superspectrum representing a general factor of psychopathology, or p-factor (Caspi et al., 2014). While HiTOP is a promising framework for understanding the ontology, causes, and consequences of psychopathology, it is critical to test the validity of HiTOP constructs and compare validity across different statistical models that are commonly used to estimate HiTOP dimensions.

Several statistical models have been used to model the HiTOP structure. Initial psychopathology structural studies used a correlated factor model, in which two or more distinct but correlated factors (e.g., internalizing, externalizing) summarize the shared variance among their indicators. Correlated factor models have consistently identified either two (internalizing, externalizing) or three (distress, fear, and externalizing) transdiagnostic factors (Achenbach, 1966; Krueger & Markon, 2006; Watson, 2005). A separate thought disorder spectrum has also emerged in some studies that modeled measures of psychosis, mania, and/or certain personality disorders (e.g., Caspi et al., 2014; Kotov et al., 2011). More recently, HiTOP dimensions have been predominantly modeled using a bifactor model, which extracts a general factor that is orthogonal to narrower specific factors (e.g., spectra). Studies comparing bifactor and correlated factor models have typically adjudicated these models using fit indices and found that the bifactor model fit better (Watts et al., 2020). However, simulation studies demonstrate that the superior fit of the bifactor model may be due to overfitting (e.g., Greene et al., 2019). The bifactor model of psychopathology has also been critiqued for yielding factors that are unreliable and difficult to interpret due to weak and inconsistent factor loadings (Levin-Aspenson et al., 2020; Watts et al., 2019) and the orthogonality of the general and specific factors (Bonifay et al., 2017). These concerns, in conjunction with recent findings that the validity of HiTOP dimensions can differ substantially across models (Conway et al., 2019; Hyland et al., 2020; Moore et al., 2020), have prompted recommendations that comparisons between bifactor models and alternative models consider external validity in addition to model fit (e.g., Bonifay et al., 2017; BornovaIova et al., 2020; Forbes et al., 2020; Watts et al., 2019).

Examining validity of HiTOP dimensions through tests of familial aggregation, clinical and laboratory correlates, specificity (i.e., discriminant validity), and longitudinal course is crucial for advancing this novel approach (Feighner et al., 1972; Robins & Guze, 1970). Twin and family studies suggest that the p-factor and internalizing and externalizing spectra are weakly to moderately familial (Lahey et al., 2011; Martel et al., 2017; Michelin et al., 2019; Pesenti-Gritti et al., 2008; Waldman et al., 2016). However, these investigations have primarily studied children and adolescents, and the extent to which familial aggregation estimates in youth generalize to older populations is unclear. Additionally, prior studies of the familial aggregation of HiTOP dimensions have not compared familial aggregation across different structural psychopathology models (e.g., Lahey et al., 2011; Martel et al., 2017; Waldman et al., 2016), highlighting the novel contribution of the present report.

In addition to familial aggregation, studies have linked HiTOP dimensions to a wide range of theoretically relevant clinical and laboratory correlates (see Conway et al., 2019; Kotov et al., 2017, for reviews). As described in a recent review (Michelin et al., 2020), some of these studies have examined relationships between HiTOP dimensions and validators from National Institutes of Mental Health’s (NIMH’s) Research Domain Criteria (RDoC) matrix. Like HiTOP, RDoC was developed to address limitations of traditional categorical nosologies, and it aims to identify biobehavioral processes underlying psychopathological phenotypes (Insel et al., 2010; Zalta & Shankman, 2016). These biobehavioral processes are organized into six domains (Positive Valence Systems [PVS], Negative Valence Systems [NVS], Cognitive Systems, Social Processes, Arousal and Regulatory Systems, and Sensorimotor Systems), each of which contains constructs and constituent subconstructs that can be studied at various units of analysis such as genes, circuits, physiology, behavior, and self-report. RDoC’s conceptualization of psychiatric phenotypes is explicitly agnostic to DSM diagnoses, and, like HiTOP, it conceptualizes psychopathology as dimensional rather than categorical. Unlike HiTOP, which is a descriptive model of clinical symptoms and is agnostic toward etiology (Kotov et al., 2017), RDoC specifies a set of constructs thought to be involved in the etiology of psychopathology. Although RDoC has had a substantial impact onpsychopathology research, it has been criticized for providing insufficient guidance on how clinical problems should be conceptualized and measured (Patrick & Hajcak, 2016). Given the complementarity of the two frameworks, studies bridging HiTOP dimensions and RDoC (sub)constructs are needed (Conway et al., 2019; Michelin et al., 2020).

The present study aimed to (a) examine the criterion and discriminant validity of HiTOP dimensions using familial aggregation and RDoC (sub)constructs as validators, and (b) compare criterion validity across bifactor and correlated factor models. Due to sample exclusion criteria and the psychopathology data available, we focused our analyses on the internalizing and disinhibited externalizing spectra, the distress and fear subfactors, and the p-factor. Additionally, as there are many RDoC (sub)constructs, we focused on certain (sub)constructs that have been consistently linked to at least one of the HiTOP dimensions under examination and for which data were available. Specifically, we examined Reward Anticipation and Initial Response to Reward (subconstructs within the Reward Responsiveness construct in the PVS), the Potential Threat construct in the NVS, and two subconstructs within the Cognitive Control construct in the Cognitive Systems domain (switching and inhibition).

We hypothesized that both correlated factor models and bifactor models would fit the data adequately, with the bifactor models having superior fit. We also expected that analyses of familial aggregation would replicate results from several prior studies that reported moderate familial aggregations of HiTOP dimensions.
derived from bifactor models (Martel et al., 2017; Waldman et al., 2016) or exploratory factor analysis (Michelini et al., 2019). Based on a recent review of studies examining connections between RDoC (sub)constructs and HiTOP dimensions (Michelini et al., 2020) and other recent relevant studies (Conway et al., 2019; Corea et al., 2019; Crane et al., 2021; Radoman et al., 2019; Stevens et al., 2019), we hypothesized that (a) disinhibited externalizing would be positively related to Reward Anticipation, (b) disinhibited externalizing and the distress subfactor would be negatively associated with Initial Response to Reward, (c) internalizing and the fear subfactor would be positively associated with Potential Threat, (d) the disinhibited externalizing spectrum would be negatively related to Switching and Inhibition, and (e) internalizing spectra and the fear subfactor would be negatively associated with Inhibition. Based on several studies that compared the validity of bifactor and correlated factor psychopathology models using other validators and in other populations (Conway et al., 2019; Forbes et al., 2020; Watts et al., 2019), we hypothesized that the best-fitting bifactor model may have a less consistent and interpretable validity pattern than the correlated factor model.

Method

Participants

Young adults (N = 504) were recruited from the local community via fliers, Internet postings, and area mental health clinics as part of a family study funded under the RDoC initiative (Corea et al., 2019; Funkhouser et al., 2019; Stevens et al., 2019). Consistent with recommendations for both HiTOP (Stanton et al., 2020) and RDoC (Cuthbert & Insel, 2013), the study had no diagnostic-based inclusion criteria, but oversampled for internalizing symptoms and substance use disorders to increase clinical relevance (e.g., specific and separate advertising for individuals with depression, anxiety, substance use, etc.). Participants were required to be between the ages of 18 and 30 years to ensure they were still in the peak risk window for psychopathology (Kessler et al., 2005) and to have at least one full biological sibling within the same age range who was eligible to enroll. Although most participants had a sibling who also participated, 30 participants did not. Participants were excluded from the study if they had a personal or family history of psychosis or mania; were unable to read or write English; had a history of head trauma with loss of consciousness; or were left-handed. These exclusion criteria served to ensure participants were able to provide consent and to mitigate confounds to psychophysiological data (reported elsewhere). Sample demographics and clinical characteristics are presented in Table 1.

Psychopathology Assessment

Lifetime psychopathologies were assessed by interviewers using the research version of the Structured Clinical Interview for Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM–5 SCID; First et al., 2015). The following disorders were assessed: major depressive disorder (MDD), generalized anxiety disorder (GAD), posttraumatic stress disorder (PTSD), panic disorder (PD), social anxiety disorder (SAD), specific phobia (SP), agoraphobia, obsessive–compulsive disorder (OCD), anorexia nervosa, bulimia nervosa, binge eating disorder, and substance use disorders for all of the DSM–5 substance classes except caffeine and tobacco. However, agoraphobia, eating disorders, and all substance use disorders except for alcohol use disorder (ALC), cannabis use disorder (CANN), and stimulant use disorder (STIM) were excluded from analyses due to low frequency (<20 cases meeting lifetime diagnostic criteria).

The diagnostic interview used in the present study was modified in several ways to improve its utility for modeling psychopathology structure. First, skip-outs for MDD and GAD were ignored, allowing for the assessment of each GAD and MDD symptom regardless of the presence of the cardinal symptom(s). For all other disorders, DSM hierarchical exclusion rules were followed—thus, noncardinal symptoms were not assessed if the cardinal symptom(s) were not endorsed because noncardinal symptoms for these disorders are dependent on the endorsement of the cardinal symptom(s). For example, for PTSD, it would not make sense to assess criteria B, C, D, and/or E (i.e., trauma-related symptoms) if a participant did not endorse criterion A (exposure to a trauma). Second, if a participant did endorse the cardinal symptom of a disorder, all subsequent skip-outs were ignored and all noncardinal symptoms were assessed. For example, if a participant endorsed PTSD criterion A, interviewers assessed all lifetime PTSD symptoms even if the participant did not fully meet criteria B, C, D, and/or E. The suspension of skip outs when appropriate is especially important in structural psychopathology studies because adhering to the DSM-based skip structure can influence the

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (M, SD)</td>
<td>22.40 (3.18)</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>321 (63.7)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>214 (42.5)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>106 (21.0)</td>
</tr>
<tr>
<td>African American</td>
<td>79 (15.7)</td>
</tr>
<tr>
<td>Asian</td>
<td>59 (11.7)</td>
</tr>
<tr>
<td>Middle Eastern</td>
<td>15 (3.0)</td>
</tr>
<tr>
<td>Mixed race</td>
<td>29 (5.8)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Some high school</td>
<td>16 (3.2)</td>
</tr>
<tr>
<td>Graduated high school or equivalent</td>
<td>27 (5.4)</td>
</tr>
<tr>
<td>Some college</td>
<td>254 (50.5)</td>
</tr>
<tr>
<td>Graduated 2-year college</td>
<td>26 (5.2)</td>
</tr>
<tr>
<td>Graduated 4-year college</td>
<td>180 (35.8)</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Full-time</td>
<td>117 (23.3)</td>
</tr>
<tr>
<td>Part-time</td>
<td>114 (22.7)</td>
</tr>
<tr>
<td>Student</td>
<td>245 (48.7)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>27 (5.4)</td>
</tr>
<tr>
<td>Lifetime diagnoses</td>
<td></td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td>182 (36.1)</td>
</tr>
<tr>
<td>Generalized anxiety disorder</td>
<td>54 (10.7)</td>
</tr>
<tr>
<td>Posttraumatic stress disorder</td>
<td>36 (7.1)</td>
</tr>
<tr>
<td>Social anxiety disorder</td>
<td>101 (20.0)</td>
</tr>
<tr>
<td>Specific phobia</td>
<td>105 (20.8)</td>
</tr>
<tr>
<td>Panic disorder</td>
<td>42 (8.3)</td>
</tr>
<tr>
<td>Obsessive compulsive disorder</td>
<td>33 (6.6)</td>
</tr>
<tr>
<td>Alcohol use disorder</td>
<td>149 (29.6)</td>
</tr>
<tr>
<td>Cannabis use disorder</td>
<td>101 (20.0)</td>
</tr>
<tr>
<td>Stimulant use disorder</td>
<td>20 (4.0)</td>
</tr>
</tbody>
</table>
covariance between disorders, which in turn can bias estimates of higher-order factors (Conway & Brown, 2018). Third, in contrast to the DSM’s requirement that a diagnosis should not be assigned if its features are better accounted for by another disorder, symptoms were permitted to count toward multiple diagnoses. Interviewers were trained to criterion by viewing the SCID-101 training videos and completing three SCID interviews observed by an advanced interviewer in which diagnoses were in full agreement with those of the observer.

Consistent with HiTOP’s and RDoC’s dimensional conceptualization of psychopathology and recommendations for assessing HiTOP constructs (Stanton et al., 2020), we computed dimensional lifetime disorder severity scales by summing each symptom within a disorder, with each symptom rated as either 1 (absent), 2 (subthreshold), or 3 (full threshold). In a previous study of a subset of this sample, these lifetime disorder severity scales were more reliable and valid than categorical diagnoses and exhibited strong internal consistency (α = .78) and test–retest reliability (intraclass correlation coefficient [ICCs] > .61; Shankman et al., 2018). Associations between disorder severity scales are presented in Supplementary Materials Table 1.

RDoC Measures

Temporal Experience of Pleasure Scale

The anticipatory and consummatory subscales of the Temporal Experiences of Pleasure Scale (TEPS; Gard et al., 2006) were used to measure the PVS Reward Responsiveness subconstructs of Reward Anticipation and Initial Response to Reward, respectively. The anticipatory subscale contains 10 items (e.g., “I look forward to a lot of things in my life”) and the consummatory subscale contains eight items (e.g., “I enjoy taking a deep breath of fresh air when I walk outside”). Each item is rated on a 6-point Likert scale ranging from 1 (very false for me) to 6 (very true for me). Cronbach’s αs for the anticipatory (α = .78) and consummatory (α = .78) subscales were adequate in the present study.

Intolerance of Uncertainty Scale-12

The Intolerance of Uncertainty Scale-12 (IUS-12; Carleton et al., 2007) assesses responses to uncertainty or ambiguity, and was used as a measure of the Potential Threat construct in the NVS. The IUS-12 contains 12 items (e.g., “Unforeseen events upset me greatly,” “The smallest doubt can stop me from acting”) rated on a 5-point Likert scale ranging from 1 (not at all characteristic of me) to 5 (entirely characteristic of me). The IUS-12 yields a total score and two subscales (prospective and inhibitory intolerance of uncertainty), but as the RDoC matrix does not distinguish between prospective and inhibitory intolerance of uncertainty, we focused on total IUS-12 scores (α = .90).

Anxiety Sensitivity Index-3

The NVS Potential Threat construct was also assessed using the Anxiety Sensitivity Index-3 (ASI-3; Taylor et al., 2007), an 18-item self-report measure of fear of specific anxiety symptoms and associated consequences in physical, cognitive, and social domains. Items are rated on a Likert scale from 1 (very little) to 5 (very much) and were summed to form a measure of anxiety sensitivity (α = .90). Sample items include “It scares me when my heart beats rapidly,” “I worry that other people will notice my anxiety,” and “It scares me when I am unable to keep my mind on a task.”

Delis-Kaplan Executive Function System

Subconstructs of Cognitive Control within the Cognitive Systems domain were assessed at the behavioral unit of analysis using subtests from the Delis-Kaplan Executive Function System (D-KEFS; Delis et al., 2001). Switching was assessed using the Number-Letter Sequencing condition of the Trail Making test, the Category Switching condition of the Verbal Fluency subtest, and the Switching condition of the Design Fluency subtest. As performance in these three conditions were moderately correlated (rs = .18–.31, ps < .001), a switching composite score was calculated by reverse-scoring raw scores reflecting completion time (so that higher scores reflected better performance for all variables) and averaging the z-scores of these three conditions. Inhibition was assessed using the Empty Dots Only condition from Design Fluency and the Inhibition condition from the Color-Word Interference Test, which is analogous to the classic Stroop test (Stroop, 1935). Consistent with prior studies (Rey-Mermet et al., 2018), these inhibition measures were only weakly correlated, r = .09, p = .050, and were examined as separate validators.

Data Analysis

Bivariate associations between disorder severity scales and RDoC (sub)constructs were calculated using multilevel correlations implemented in the `correlations` R package (Makowski et al., 2020), which adjusted for nonindependence of observations (i.e., siblings nested within families). The familial aggregations of disorder severity scales and RDoC (sub)constructs were estimated using ICCs.

A series of measurement models were fit using confirmatory factor analysis (CFA). The following models were tested: (1) a unidimensional model with one general factor, (2) a correlated two-factor model with internalizing and disinhibited externalizing dimensions, (3) a correlated three-factor model with distress, fear, and disinhibited externalizing dimensions, (4) a bifactor model with a general factor orthogonal to two specific factors (internalizing and disinhibited externalizing), and (5) a bifactor model with a general factor orthogonal to three specific factors (distress, fear, and disinhibited externalizing). The internalizing factor featured loadings from MDD, GAD, PTSD, SAD, SP, PD, and OCD, and the disinhibited externalizing factor was indicated by ALC, CANN, and STIM. In the models in which internalizing was separated into distress and fear, distress was indicated by MDD, GAD, and PTSD and fear was indicated by SAD, SP, PD, and OCD. Higher-order models with two or three first-order factors were not tested because at least four first-order factors are required to statistically compare the fit of a higher-order model and correlated factor model (Brown, 2015).

Participants were randomly assigned to be either sibling one or two within their sibling pair, making them indistinguishable dyads. CFAs were estimated in a dyadic analytic framework following Olsen and Kenny (2006; see Supplemental Materials Figure 1). Means, loadings, variances, and intrasibling covariances were estimated for both sets of siblings, and were constrained to be equal across siblings. All models also included cross-sibling covariances...
for all manifest and latent variables, representing their familial aggregation.

Model fit was evaluated using traditional fit indices, which were adjusted as appropriate to account for model misfit attributable to the random assignment of siblings within each sibling pair (Olsen & Kenny, 2006). Indices of absolute fit included the comparative fit index (CFI), Tucker-Lewis index (TLI), and root mean square error of approximation (RMSEA). CFI and TLI > .90 and RMSEA < .06 were considered indicative of acceptable fit (Hu & Bentler, 1999). We also report the Akaike information criterion (AIC) and Bayesian information criterion (BIC), for which lower values indicate better fit (e.g., differences of 10 points strongly favor the model with a lower value; Raftery, 1993).

Due to concerns about factor reliability in the bifactor model based on prior studies (Conway et al., 2019; Levin-Aspenson et al., 2020; Martel et al., 2017; Watts et al., 2019), we assessed factor reliability for the best-fitting models. Specifically, construct replicability of the latent factors in the best-fitting correlated factor model and bifactor model was measured by Hancock’s H (Hancock & Mueller, 2001), which quantifies the extent to which a factor is well-defined by its indicators and replicable. H values range from 0–1, with >.70 were considered acceptable (Hancock & Mueller, 2001; Rodriguez et al., 2016). For the best-fitting bifactor model, coefficient omega (ω) and omega subscale (ωh) were used to measure the proportion of common variance explained by the general and specific factors (McDonald, 1999). Omega hierarchical (ωh; McDonald, 1999; Reise et al., 2013) and ω hierarchical subscale (ωhs) were calculated to measure the reliability of the general and specific factors after partialing out variance attributable to the specific or general factor(s), respectively. In contrast to H, which represents the correlation between a factor and an optimally-weighted item composite, ωh and ωhs reflect the correlation between a factor and a unit-weighted composite (Rodriguez et al., 2016). A large ωh estimate in conjunction with relatively small ωhs estimates provides evidence that the general factor is more reliable than the specific factors. Explained common variance (ECV; Reise et al., 2010), or the proportion of indicator variance explained by each factor, was used to assess the relative strengths of the general and specific factors. Omega indices and ECV range from 0–1, with values >.80 indicating acceptable reliability (Rodriguez et al., 2016). Estimated factor scores for the HiTOP dimensions were extracted from the best-fitting correlated factor model and bifactor model, and multilevel correlations between these factor scores were used to assess factor similarity between the two models.

Structural equation modeling (SEM) was used to predict each RDoC validator from the HiTOP dimensions. The factor structure for the SEM models was fixed to be identical to the estimated factor structure in the CFA models. As in the measurement models, the means and variances of RDoC validators and regression coefficients were constrained to equality across siblings, and cross-sibling covariances were modeled for each validator. Discriminant validity was evaluated using likelihood ratio tests to assess whether cross-sibling factor correlations or structural regression coefficients from latent factors to each RDoC validator could be equated without a decrease in model fit. All variables were standardized before analysis. The vast majority (98.2%) of the sample had complete disorder severity scale data. There was also minimal missing data for the RDoC validators (≤6%), with the exception of the TEPS (21.3%), which was added to the study’s questionnaire battery after data collection had commenced. Missing data were handled using full-information maximum likelihood. Analyses were performed using the lavaan package in R (Rosseel, 2012).

Results

Measurement Model Fit

Fit indices for the CFA models are presented in Table 2. Whereas the unidimensional model fit the data poorly, the correlated two-factors model had acceptable fit to the data. The correlated three-factors model also fit acceptably, but did not improve fit relative to the correlated two-factor model. Additionally, the distress and fear dimensions in the correlated three-factor model were strongly correlated (r = .89), meaning they could not be meaningfully differentiated in these data. Consistent with prior findings, the bifactor model with two specific factors had superior fit to the correlated two-factor model as measured by the CFI, TLI, and RMSEA. The bifactor model with three specific factors was inadmissible due to a negative residual variance for PTSD and is not reported. As simulation studies have demonstrated the superior fit of the bifactor model to any data relative to correlated factor models (Greene et al., 2019), we focused our validity analyses on the correlated two-factor model and bifactor model with two specific factors, which were the two best-fitting measurement models.

Standardized factor loadings for these two models are presented in Figure 1. All loadings in the correlated factor model were positive and significant (mean λ = .51; ps < .001), ranging from .25 (OCD) to .72 (ALC). Loadings were somewhat weaker for the internalizing dimension (mean λ = .46) relative to the disinhibited externalizing dimension (mean λ = .64). In the bifactor model, loadings on the specific factors were generally weaker (mean λ = .34) and had larger standard errors compared with the correlated factor model. In particular, internalizing specific factor loadings within the bifactor model (mean λ = .24) were mostly nonsignificant and were weaker than the disinhibited externalizing specific factor loadings (mean λ = .57). Loadings on the general factor were weak to

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Fit Indices for Confirmatory Factor Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>df</td>
</tr>
<tr>
<td>Unidimensional</td>
<td>79</td>
</tr>
<tr>
<td>Correlated factor (two factors)</td>
<td>77</td>
</tr>
<tr>
<td>Correlated factor (three factors)</td>
<td>74</td>
</tr>
<tr>
<td>Bifactor (two specific factors)</td>
<td>67</td>
</tr>
</tbody>
</table>

Note. CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; BIC = Bayesian information criterion; AIC = Akaike information criterion.
Reliability of HiTOP Factors

Reliability results are presented in Supplemental Material Table 2. In the correlated factor model, Hancock’s H values (i.e., construct replicability) were acceptable for both the internalizing (.71) and disinhibited externalizing factors (.70). In the bifactor model, H statistics were suboptimal for the internalizing (.45) and disinhibited externalizing (.62) specific factors, but were sufficient for the general factor (.71). ECV values for the general (.52) and internalizing specific factor (.29) were below acceptable cutoffs, although ECV for the disinhibited externalizing specific factor (.79) approached the cutoff for acceptability. \(\alpha / \omega_{\alpha} \) and \(\omega_{\alpha} / \omega_{\alpha} \) values for all factors in the bifactor model did not meet benchmarks for acceptable reliability.

Associations Between Factor Scores Across Models

Multilevel correlations between estimated factor scores for each estimated HiTOP dimension in the bifactor and correlated factor models are presented in Table 3. These correlations indicated that the internalizing \((r = .31) \) and disinhibited externalizing \((r = .90) \) dimensions were moderately and strongly similar across the two models, respectively. Additionally, the correlation between the (a) internalizing dimension in the correlated factor model, and the (b) general factor in the bifactor model was near perfect \((r = .96) \). The general factor in the bifactor model was also associated with the disinhibited externalizing factor in the correlated factor model \((r = .61) \).

Table 3

<table>
<thead>
<tr>
<th>Correlated factor dimensions</th>
<th>Bifactor dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internalizing</td>
<td>Disinhibited externalizing</td>
</tr>
<tr>
<td>Internalizing</td>
<td>.31</td>
</tr>
<tr>
<td>Disinhibited externalizing</td>
<td>-.27</td>
</tr>
</tbody>
</table>

Note. HiTOP = Hierarchical Taxonomy of Psychopathology. All correlations are statistically significant at \(p < .001 \).
were more strongly associated with the general factor than with the two Potential Threat measures in both models. In the bifactor model, the general factor related to internalizing than disinhibited externalizing, such that Initial Response to Reward was significantly more associated with greater Initial Response to Reward in internalizing was associated with greater Initial Response to Reward, whereas associations between Initial Response to Reward and disinhibited externalizing or the general factor were weakly positive and nonsignificant. Discriminant validity tests indicated that the magnitudes of these associations significantly differed such that Initial Response to Reward was significantly more related to internalizing than disinhibited externalizing, $\Delta \chi^2(1) = 15.27, p < .001$, and the general factor, $\Delta \chi^2(1) = 7.37, p = .007$. No HiTOP dimensions were associated with Reward Anticipation in either model.

For the NVS validators, both the correlated factor model and bifactor model suggested that internalizing was positively associated with both measures of Potential Threat (intolerance of uncertainty and anxiety sensitivity). In both models, the Potential Threat measures were more strongly associated with internalizing than with disinhibited externalizing, $\Delta \chi^2(1) > 33, ps < .001$, which was weakly and nonsignificantly related to the Potential Threat measures in both models. In the bifactor model, the general factor was also positively associated with the two Potential Threat measures. Discriminant validity tests suggested that anxiety sensitivity was more strongly associated with the general factor than with internalizing, $\Delta \chi^2(1) = 10.74, p = .001$, but intolerance of uncertainty was not differentially associated with the two dimensions, $\Delta \chi^2(1) = 1.11, p = .291$. Notably, the effects of internalizing on the Potential Threat measures were attenuated by 39–57% in the bifactor model compared with the correlated factor model due to the inclusion of the general factor.

Regarding the Cognitive Control subconstructs within the Cognitive Systems domain, the HitOP dimensions in both the correlated factor model and bifactor model were unrelated to switching and inhibition as measured by the Color-Word Interference test. Disinhibited externalizing was unrelated to inhibition as assessed by the Design Fluency subtest in both models. Internalizing in the correlated factor model was associated with poorer inhibition as assessed by the Design Fluency subtest. In contrast, in the bifactor model, the general factor (but not internalizing) was significantly associated with poorer inhibition, although the magnitude of these two associations did not significantly differ, $\Delta \chi^2(1) = 1.44, p = .229$.

Discussion

Studies examining the structure and validity of HiTOP dimensions have predominantly used bifactor models, which tend to overfit, may be unreliable, and may yield different validity patterns than alternative models (Greene et al., 2019; Hyland et al., 2020; Watts et al., 2019). The present study tested and compared the reliability and validity of higher-order HiTOP dimensions across bifactor and correlated factor models of psychopathology using familial aggregation and associations with RDoC (sub)constructs as validators.

The data were best fit by a correlated two-factor model and a bifactor model with two specific factors, with the bifactor model having slightly superior fit. The internalizing and disinhibited externalizing dimensions in the correlated factor model featured moderate loadings and demonstrated acceptable reliability. When specified as specific factors in a bifactor model, however, the internalizing and disinhibited externalizing dimensions exhibited suboptimal reliability and had weaker factor loadings with larger standard errors. Specific factor loadings were particularly weak for internalizing disorders, which were the strongest indicators of the general factor. The general factor had acceptable construct replicability as assessed by Hancock’s H, but did not meet acceptable reliability thresholds as assessed by ω_0, ω_H, or ECV. Cross-model correlations of factor scores revealed additional interpretative issues regarding the bifactor model. While the disinhibited externalizing factor was highly similar across the correlated factor and bifactor models ($r = .90$), the internalizing dimension in the correlated factor model was only weakly correlated with its counterpart in the bifactor model ($r = .31$) and instead was nearly identical to the general factor ($r = .96$).

Validity analyses indicated that the internalizing and disinhibited externalizing dimensions in the correlated factor model were moderately familial, and the magnitude of their familial aggregations did not significantly differ. In the bifactor model, the familial aggregations of the general factor and disinhibited externalizing dimension were both moderate to strong, which is consistent with prior findings in youth (Martel et al., 2017; Michelin et al., 2019; Pesenti-Gritt et al., 2008; Waldman et al., 2016). However, the internalizing factor was no longer familial after partialing out variance attributable to the general factor in the bifactor model. This might suggest that familial influences on the internalizing spectrum may be largely mediated by genetic and shared environmental influences on the general factor (Lahey et al., 2011; Waldman et al., 2016). However, considering the general factor was disproportionately represented by internalizing disorders and the internalizing specific factor in the bifactor model was poorly defined and did not reach benchmarks for acceptable reliability, this finding may be due to there being relatively little reliable residual variance in the internalizing factor after removing variance accounted for by the general factor.

Cross-model comparisons of associations between HiTOP dimensions and RDoC (sub)constructs yielded a similar—albeit
more nuanced—pattern. Initial Response to Reward was positively associated with the disinhibited externalizing dimension in the correlated factor model, and was weakly, nonsignificantly, and negatively associated with its counterpart specific factor in the bifactor model. Initial Response to Reward also was more strongly negatively associated with the internalizing dimension in the bifactor model than in the correlated factor model. This was one of the few instances in which a HiTOP spectrum was more strongly related to a validator in the bifactor model than in the correlated factor model. However, this effect was surprising considering that MDD—the internalizing disorder most typically associated with Initial Response to Reward (Michelini et al., 2020)—loaded weakly onto the internalizing specific factor. Instead, the internalizing specific factor was most strongly defined by specific phobia. Although Initial Response to Reward is not widely studied in relation to specific phobia (Michelini et al., 2020), several studies have found no association between Initial Response to Reward and fear-based disorders (Burkhouse et al., 2017; Burkhouse et al., 2016; Kujawa et al., 2017; however, see Lieberman et al., 2017), suggesting that the association between Initial Response to Reward and the internalizing specific factor may be a spurious effect generated from the bifactor model.

In both the correlated factor and bifactor models, the NVS construct Potential Threat was positively associated with the internalizing spectrum, but was unrelated to the disinhibited externalizing spectrum. This effect was robust across two measures of Potential Threat (intolerance of uncertainty and anxiety sensitivity), and is consistent with prior studies of this construct (Correa et al., 2019; Naragon-Gainey, 2010). The general factor in the bifactor model was moderately associated with greater Potential Threat. The pattern of significant associations between HiTOP spectra and Potential Threat measures was identical between the correlated factor and bifactor models, although the effects of the internalizing dimension on intolerance of uncertainty and anxiety sensitivity were weakened by 39% and 57%, respectively, in the bifactor model compared with the correlated factor model.

Compared with the NVS and PVS (sub)constructs, the Cognitive Systems subconstructs had weaker associations with HiTOP dimensions. This is unsurprising given that the Cognitive Systems subconstructs were assessed behaviorally while the NVS and PVS (sub)constructs were assessed using self-report and had overlapping method variance (Campbell & Fiske, 1959) with the HiTOP assessment (although HiTOP dimensions were assessed via interview not questionnaire). Nevertheless, Design Fluency inhibition was associated with the internalizing dimension in the correlated

Note. RDoC = Research Domain Criteria; HiTOP = Hierarchical Taxonomy of Psychopathology; PVS = positive valence system; NVS = negative valence system; CS = cognitive systems. Error bars represent 95% confidence intervals. See the online article for the color version of this figure.
factor model and with the general factor in the bifactor model, although the other two Cognitive Systems measures (switching and Color-Word Interference inhibition) were not related to any psychopathology dimensions in either model.

In summary, associations between HITOP dimensions and RDoC (sub)constructs were strongest between NVS measures and the internalizing dimension in the correlated factor model and the general factor in the bifactor model, which were largely redundant with each other.

More broadly, the factor loadings, reliabilities, cross-model factor score correlations, and validity evidence suggest that the bifactor model had a vanishing internalizing specific factor, meaning that the general factor served as a referent marker of the indicators contained in the internalizing specific factor (Eid et al., 2017). This explains why the general factor was isomorphic with the internalizing dimension in the correlated factor model, and supports the hypothesis that the addition of the general factor in the bifactor model may merely serve to redistribute variance described by the correlated factor model rather than capture previously unexplained variance (Watts et al., 2019).

Strengths, Limitations, and Constraints on Generalizability

This study was well suited for modeling HiTOP dimensions and their relationships with RDoC (sub)constructs. The lack of diagnostic inclusion criteria, modifications to the interview-based psychopathology assessment (e.g., suspended certain skip-outs), and dimensional operationalization of disorders (which has better psychometric properties than diagnoses; Shankman et al., 2018) were all in line with recommendations for HiTOP and RDoC studies (Cuthbert & Insel, 2013; Stanton et al., 2020; Walther et al., 2019). Other strengths included the examination of numerous RDoC validators in the same sample, tests of the discriminant validity of HiTOP dimensions, and the use of a dyadic analytic framework to examine the familial aggregation of latent HiTOP dimensions.

However, there are a number of limitations and constraints on the generalizability of these findings, which we believe are also applicable to many other structural psychopathology studies. Cross-study differences in sample characteristics such as age, recruitment setting, and severity of psychopathology may affect the relationships between disorders upon which factor analytic models are based (Conway & Brown, 2018; Levin-Aspenson et al., 2020). Additionally, differences in psychopathology assessments such as mode of administration (e.g., interview vs. questionnaire), operationalization of psychopathology (e.g., diagnoses vs. continuous measures), and time period assessed (e.g., lifetime vs. current) may impact generalizability. This study used interview-based continuous measures of worst-in-lifetime psychopathology in a sample of young adult community members. Although these measures have demonstrated adequate reliability in this sample (Shankman et al., 2018), results may differ as a function of sample and/or assessment characteristics.

Additionally, the extent to which these findings would generalize to studies of other HiTOP dimensions—or even studies modeling the same dimensions using different indicators—is unclear. Recent work focusing on the general psychopathology factor in bifactor models has demonstrated that (a) there is wide variability in the sets of indicators included across studies (Watts et al., 2020), and (b) differences in the set of indicators examined can have a substantial effect on the composition of the general factor (Watts et al., 2019). Future research characterizing the extent to which these issues apply to other HiTOP dimensions (e.g., spectra) and/or models is needed. For example, the disinhibited externalizing factor was comprised solely of substance use disorders in the present study, and the extent to which the omission of other disinhibited externalizing indicators might affect generalizability is unclear. In addition, the relatively narrow measurement of disinhibited externalizing disorders and the lack of measures of other HiTOP spectra (e.g., thought disorder) meant that the general factor in the bifactor model was disproportionately defined by internalizing indicators, which may have increased its correlation with the internalizing dimension in the correlated factor model and contributed to the weaker reliability and validity of the internalizing specific factor in the bifactor model (Bornovalova et al., 2020). This also may have contributed to the associations between the general factor and NVS validators, which may alternatively be interpreted as consistent with the p-factor reflecting negative emotionality (e.g., Brandeis et al., 2019). Vanishing and/or unreliable specific factors have appeared in previously reported bifactor models that included other HiTOP spectra (e.g., thought disorder) or syndromes/disorders (e.g., eating pathology) instead of, or in addition to, those examined in the present study (e.g., Caspi et al., 2014; Conway et al., 2019; Hyland et al., 2020). These issues have also emerged in studies that, unlike the present study, had roughly equal numbers of indicators per specific factor (e.g., Caspi et al., 2014; Martel et al., 2017), suggesting that our results may not be solely attributable to the omission of a particular HiTOP dimension or the disproportionate number of indicators for internalizing relative to disinhibited externalizing.

The present study also focused on select RDoC (sub)constructs and units of analysis. HiTOP dimensions extracted from self-report measures are likely more strongly related to self-report and behavioral RDoC measures than more distal units of analysis due to common method variance, equifinality, and multifinality (Patrick & Hajcak, 2016). Future studies could extend this work by incorporating other RDoC (sub)constructs and/or units of analysis, which may help to elucidate biological processes involved in the pathophysiology of psychopathology dimensions (e.g., Perkins et al., 2020; Shankman & Gorka, 2015).

Lastly, it is important to consider the possibility that psychopathological comorbidity may be better explained by other models not examined in the present study. For example, the HiTOP structure has also been modeled using a higher-order model in which spectra are nested under the p-factor. The present study did not include higher-order models because there were not enough first-order factors to make a higher-order model overidentified. While there is evidence that the general factor is nearly identical across the bifactor and higher-order models (Forbes et al., 2020; Hyland et al., 2020; Moore et al., 2020), spectra may be only moderately correlated between the bifactor and higher-order models (Forbes et al., 2020; Hyland et al., 2020; Moore et al., 2020). The generalizability of the bifactor criterion validity results to the higher-order model may be weaker for spectra than for the general factor. Additionally, comorbidity may be explained by direct causal relationships between symptoms (Borsboom, 2017) and research examining
HI TOP dimensions from this perspective (Funkhouser et al., 2020; 2021; McElroy et al., 2018) may be beneficial.

Conclusion

HI TOP is a highly promising organizational framework and has had a rapid and substantial impact on psychopathology research, but there is evidence that the reliability and validity of HI TOP dimensions may differ across different models. The weak loadings, suboptimal reliability, and weaker validity of the bifactor internalizing dimension relative to its counterpart in the correlated factor model support concerns about the interpretability of psychopathology dimensions when modeled using a bifactor model and demonstrate the importance of evaluating reliability and validity when comparing structural psychopathology models.

References

Received November 19, 2020
Revision received February 8, 2021
Accepted March 16, 2021